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Abstract

A procedure is developed to analyze uncertain
systems having both time-varying (T'V) and lin-
ear, time-invariant (LTT) uncertainty. The prob-
lem is formulated as a two step procedure involv-
ing the solution of two sets of LMIs using both
constant and frequency dependent scales to ac-
count for the different types of uncertainty. In
the first step, the scales corresponding to the
TV parameters are constrained to be constant
over a set of frequencies and both constant and
frequency-dependent scales are computed to min-
imize the peak value of the robustness bound for
the chosen frequencies. In the second step, the
constant scales are held fixed and the frequency-
dependent scales corresponding to the LTI un-
certainty are computed to minimize the robust-
ness bound at each frequency. Numerical ex-
amples are given to demonstrate the procedure,
which gives a less conservative result than pre-
viously shown and thus allows for more accu-
rate analysis of systems with TV and LTI un-
certainty.

1 Introduction

Control law design for systems operating over a
wide range of conditions is traditionally a heuris-
tic process consisting of several steps. First, con-
trol laws are synthesized for a representative set
of operating conditions by fixing the system’s pa-

rameters in each design. The resulting set of con-
trol laws is then implemented in the parameter-
varying system by scheduling with operating con-
dition. This gain scheduling can consist of either
switching between fixed control laws or transi-
tioning gradually from one to another using in-
terpolation. Stability of the closed-loop system
is achieved by sufficient robustness margins at
each design point and can be evaluated through
exhaustive simulation, although there is no guar-
antee of stability for all operating conditions and
time-consuming redesign is often necessary. Fur-
thermore, as the complexity of the system in-
creases or as more sophisticated control law de-
sign techniques are used, these steps can become
difficult, as the resulting control laws can become
more difficult to gain schedule because of their
increased or even varying dynamic order.

To overcome these obstacles, Packard [7] de-
veloped a technique to address the problem of
gain scheduling controllers by representing the
plant as a linear parameter-varying (LPV) sys-
tem. Here, the parameter-varying system is rep-
resented as the linear fractional transformation
of a nominal system with the time-varying pa-
rameters. The controller is then parameterized
using the same set of time-varying pafameters
so that the resulting controller is scheduled a
priori with operating condition and hence the
problem of gain scheduling a set of LTI con-
trollers can be eliminated. The TV parameters
in the plant and the controller parameterization
are combined and the problem is reformulated
into the paradigm of a nominal plant with linear




fractional uncertainty. This formulation allows
small gain synthesis techniques such as H,, or -
synthesis to be used. However, when this LPV
structure is combined with the traditional LTI
uncertainties such as actuator uncertainty, sen-
sor uncertainty, unmodeled dynamics, or a fic-
titious performance block the resulting system
has both TV and LTT uncertainty and the tradi-
tional He, or p-synthesis framework cannot ac-
count for both simultaneously. Hence, there is
a need for a nonconservative method of analyz-
ing such systems. While this framework was the
main motivation behind developing a less conser-
vative analysis technique, there are other types
of systems with both TV and LTI uncertainty.

The remainder of this paper is organized in
four sections. Necessary background theory is
discussed briefly in Section 2. In Section 3 we
develop a procedure to compute a robustness
bound for systems with both TV and LTI un-
certainty that is less conservative than currently
used methods. While not presented here, the
analysis procedure developed in Section 3 can be
used with a synthesis procedure similar to DK D
iteration presented in [9] to synthesize controllers
that are less conservative and provide better per-
formance than techniques currently being used.
This analysis procedure is demonstrated on some
numerical examples in Section 4. These exam-
ples show that the new method gives a better
robustness bound than other techniques. In Sec-
tion 5 we conclude with a brief summary and a
discussion of some lessons learned.

2 Robustness Analysis

In this section we recall some basic results in ro-
bustness theory. Consider a stable transfer func-
tion G(s) in a feedback interconnection with an
uncertain matrix A € A, where A has some
block structure and 6(A) < v for all A € A.
The primary objective of robustness analysis is
to determine the largest A for which the sta-

bility of the closed-loop system is guaranteed.
From the small gain theorem, we know that the
closed-loop system is asymptotically stable if

7(G(w)) <7,

for all w € IR. Thus, the maximum singular
value, 5(G(jyw)), gives a frequency-dependent ro-
bustness bound, the peak of which defines a lower
bound on the smallest destabilizing A.

The above robustness measure can be quite
conservative. Fortunately, the conservatism of
this robustness bound can be reduced by choos-
ing invertible scalings that commute with the
uncertain matrix A. Let D € D, where D is
the set of invertible scalings that commute with
every A € A. Note that if D € D and A € A,
then DAD™! = DDA = A. In this case, the
closed-loop system is stable if there exists D € D
such that

d(DG(w)D™') < v

for all w € IR.
Now define,

a

(w) = o(DG(w) DY),

and

2

¥ = sup y(w) =sup ¢(DG(jw)D™"),

so that ¥ is the peak of y(w), the scaled maxi-
mum singular value. Then, 3! is a lower bound
on the size of the smallest destabilizing A. Specif-
ically, stability is guaranteed for all A satisfying
o(A) < 471, that is, there is no A satisfying
o(A) < 7% such that det(s — G(yw)A) is sin-
gular for some w € IR. Then, the scalings can
be used to minimize ¥, or equivalently, to max-
imize the size of A for which stability can be
guaranteed.

Suppose A € A represents LTI uncertainty.
In this case, the scaling matrix Do € D can be




chosen to be a function of frequency so that the
peak of the robustness bound is given by

3 = sup 5(Da(&)G(1) D' ().
Hence the robustness analysis problem is to find

the frequency-dependant scale Da(w) that min-
imizes the robustness bound

(@) = &(Da(w)G(w) D3’ (w))

pointwise at each frequency. This can be com-
puted as the solution to a convex optimization
problem as in [5].

In contrast, suppose § € A represents TV
uncertainty. In this case, the scaling Dy must be
fixed for all frequency. In this case the peak of
the robustness bound is given by

~ = sup 5'(D9G(jw)D9“1).

Hence the analysis problem is to find the con-
stant scale Dy that minimizes 7, the peak of the
robustness bound y(w) = 5(DeG(jw)D; ') over
frequency. This problem can be formulated as a
convex problem in the state space as in [3]. Al-
ternatively, if the plant has the LPV form in [7]
the analysis can be done as a step of the con-
troller synthesis using the method presented in

[2].

In many cases, the uncertain matrix A € A
may represent uncertainty having both LTI and
TV blocks. In this case, the augmented uncer-

tainty A is
X 6 0
A_[O A].

structure can be defined as

Dy 0

0 Da(w) |-
The analysis problem is then to find the constant
and frequency dependent scales Dy and D (w)

D=

that minimize the peak of the robustness bound
given by

¥=sup g (DG(]w)D*l) . (1)

FFurthermore, since the frequency dependent scales
that minimize 7 are only unique at the frequency
at which 4 occurs, additional analysis informa-
tion can be obtained at other frequencies by find-
ing the frequency-dependent scales Da(w) that
minimize

Y(w) =& (DG(w) D7), (2)

at each w € IR. The method to obtain the scales
for this case is not as straightforward since some
of the scales must be constant over all frequen-
cies while others can vary with frequency. The
procedures described for the case of only TV un-
certainty could be applied here by treating LTI
uncertainty as TV; however, this could be con-
servative. In order to minimize the conservatism,
frequency-dependent scales must be used for the

LTT blocks.

Some of the conservatism introduced by treat-
ing all of the uncertainty as TV and using a
method such as in [3] to obtain all constant scales
can be reduced by performing a second step which
scales the LTI blocks with frequency-dependent
scales. This 3Ds procedure is summarized be-
low. Using a state space formulation, find the
constant scale Dy and the constant scale Da,
that minimize '

(Il Dy 0 D' 0
o[t oo )

Then, at each frequency find the frequency de-

Invertible scalings having the complementary block pendent scales, Da(w), minimizing,

() =& (DG(w)D) .

Finally, the peak value of this robustness bound
gives 7. This technique has the advantage that
it can be used to analyze any system containing
TV and LTI uncertainties.




Similarly, in [9], the method of [2] was aug-
mented with a second step which scales the LTI
blocks with frequency-dependent scales, thus re-
ducing the conservatism. This DK D technique
presented in [9] can be summarized as follows.
First, let G(s) = Fp(P(s), K(s)) where P(s) is
an LPV system and K(s) is an LPV controller,
both in linear fractional form as described in
[7]. Using the technique of [2], find the constant
scale, Dy, and the controller minimizing

Dyt 0

coo((% o] 7 2)

Then, at each frequency find the frequency de-
pendent scales, Da(w), minimizing,

Dy 0
0 I

Y(w)=2o (DG(]w)D“l) :

Finally, 4 is given by the peak value of the ro-
bustness bound y(w). Note that this procedure
is usually used in an iterative manner and works
well for synthesis for the class of problems de-
scribed in [7]. However, the analysis is a byprod-
uct of synthesis, which is a rather limiting con-
straint as often it is desirable to analyze a con-
troller’s robustness to uncertainties that weren’t
accounted for during synthesis. Additionally,
there are systems that contain TV uncertainties
for which the method in [2] doesn’t apply.

Unfortunately, both of the above methods
can introduce significant conservatism, since there
is no guarantee that the constant scale found
in the first step is the best constant scale once
the system is augmented with the frequency-
dependent scales obtained in the second step.
This is easy to verify by computing the second
step using different constant scales. In [1] an al-
ternative approach is given, where the frequency-
dependent scale is parameterized as a rational
function and the optimization problem is refor-
mulated using results such as those in [4, 8.
This procedure can be very computationally in-
tensive even for problems of moderate size, and
the dynamic order of the frequency-dependent

scale must be chosen a priori. If too low an or-
der is specified the results could be arbitrarily
conservative. On the other hand, the computa-
tional time becomes prohibitive for systems of
even moderate order. At present, this technique
doesn’t seem practical and was not used for com-
parison in our numerical work.

3 Analysis with Varying and
Uncertain Parameters

In this section we describe a new procedure for
computing the optimal mixed, constant and fre-
quency dependent scales for systems with both
TV and LTI uncertainty, that is, we describe a
procedure that gives the least conservative re-
sults possible for the analysis problem described
by equations (1) and (2). The problem is for-
mulated as a two step procedure involving the
solution of two sets of LMIs. In the first step,
the scales corresponding to the TV parameters
are constrained to be constant over a set of fre-
quencies. Then, both constant and frequency-
dependent scales that minimize the peak of the
scaled maximum singular value are computed
for the chosen frequencies. In the second step,
the constant scales are held equal to the value
found in the first step and the optimal frequency-
dependent scales corresponding to the LTI un-
certainty are computed to minimize the scaled
maximum singular value at each frequency. It
should be noted that the peak of the robust-
ness bound cannot be reduced in the second step.
Thus, for analysis purposes where only the peak
value of the robustness bound is needed, only
step one needs to be completed.

Using the definition of the maximum singu-
lar value, it follows that there exists an invert-
ible scaling D such that 6(DG(jw)D™1) < v if
and only if there exists a positive definite scal-
ing @ such that G*()w)QG(jw) < v*Q, where
Q € D and D = QY2 Thus, the system is




stable for all A € A satisfying 5(A) < 471 if
G"(w)QG(jw) < ¥°Q, where Q € D.

Now, the analysis problem for systems with
both TV and LTT uncertainties described in equa-
tions (1) and (2) can be restated. Let the scaling
matrix ) be partitioned as

[ Qe 0

0 Qa(w)

where ()¢ is the constant scaling matrix corre-
sponding to the TV parameter and Qa(w) is the
frequency-dependent scaling matrix that corre-
sponds to the LTI uncertainty. Then, for mixed
TV and LTT uncertainty, the analysis problem is

to find @y and Qa(w) in

G (w)QG(w) < 7*(w)Q

that minimizes the peak of v(w) for all w € IR
and minimizes y(w) at all other frequencies. The
two step procedure used to perform this analysis
can be summarized as follows. First find Q4 and
@a(w) minimizing 4 such that

G"(w)QG(w) <7°Q

for all w € IR. This gives the optimal constant
scale, Dy = Qg'/?. Then, at each frequency w
find a new Qa(w) that minimizes y(w) at that
frequency such that

G*(jw)QG(w) < ¥ (w)Q.
This gives the optimal frequency-dependent scale
Da(w) = Qa*(w).

These two steps are refered to as the ‘DD’
procedure and are implemented using LMIs as
follows.

Q:

7

1. Choose a set of frequencies w; and evalu-
ate the system frequency response G(jw;)
at those frequencies. Form the system of

LMIs
Qé’ > 07

Qalw) >
G (wi)QiG(w:) <

where

Qi:[ 0 Qa(wi)

is the scaling matrix for the sth frequency.
Then, find the scalings @y, 7 = 1,...,n,
that minimize ¥ subject to the system of
LMIs.

Qs 0 l

2. For each frequency, form the system of LMIs

QA(LU{) > 0,
G"(Jwi)QiGwi) < 7*Q,

using the value of () found in the previous
step. Then, at each frequency w;, find the
scaling Qa(w;) that minimizes 7; subject
to the system of LMIs.

The first set of LMIs minimizes the peak of
the robustness bound over the set of chosen fre-
quencies to yield the suboptimal value of the
constant scaling (Js. As the number of frequen-
cies increases, (Jg approaches its optimal value.
The second set of LMIs minimizes the robustness
bound at each frequency w; to yield the optimal
values of the frequency-dependent scales Qa (w;).

4 Numerical Examples

In this section we show two numerical examples
using the procedure presented in the previous
section. The first example is used to demon-
strate the procedure, while the second exam-
ple shows that the procedure is less conservative
than other methods used to analyze this class of
problems.

4.1 Example 1

In this example we use a simple, low order model
to demonstrate the analysis procedure described




in Section 3. The analysis was performed on a
weighted, closed-loop LPV model of the VISTA
F-16 short period dynamics in linear fractional
form with time-varying parameter # and time-
invariant uncertainty Ay,.. The LPV model is
valid for an altitude of 1000 feet and a Mach
number between M,,;, = 0.35 and M,,,, = 0.65.
The controller minimizes an H,, norm for the
linear model with Mach at its nominal value of
0.5. The state space realization of the model is
given in the Appendix.

The parameter 4 is a 2 x 2 time-varying block
containing a normalized Mach number, 6 M, on
its diagonal, so that

o [ SM 0 }
- 0 &M |’
where 0M(t) € [—1 1] corresponds to a Mach
number between M,,;, and M,,,.. As the Mach
number varies, the short period model changes
to represent the short period dynamics at dif-
ferent flight conditions. The uncertainty Ay, is
scalar and is augmented with a full 3 x 3 ficti-

tious LTI performance block, Ape,s. Thus, the
augmented uncertainty A is

[6 0o o
A=]0 Ape 0
0 0 Ay

The invertible scalings associated with this block
structure can be defined as

[ Ds 0 0
D = 0 dAl(uJ) 0 )
0 0  da(w)

where Dy is a 2 X 2 constant matrix and da;(w)
and das(w) are frequency-dependent scalars. By
letting,

A — Aunc 0 l ,

0 Apers
and

[ dar(w 0
DA(W) = _ 0 ) dA2(w)] ] )

the analysis problem is in the form of equation
(1). Then, the DD analysis technique presented
in Section 3 can be directly applied to obtain
the suboptimal scalings Dy and Da(w). In the
first step of the analysis constant and frequency-
dependent scales that minimize the peak of the
robustness bound are found simultaneously. This
produces the suboptimal constant scale. Then,
in the second step, using the suboptimal con-
stant scale, new frequency-dependent scales are
found that minimize the robustness bound at
each frequency. This yields the optimal frequency-
dependent scales for the given suboptimal con-
stant scale. The robustness bound after each
of the two steps is shown in Figure 1. Note
that the peak of the bound was minimized in
the first step but at other frequencies the bound
was minimized in the second step. The optimal
frequency-dependent scales da;(w) and daz(w)
obtained after the second step are shown in Fig-
ure 2. The constant scale Dy is

1.0000 —0.0027

Do =\ _.0007 0.2094

25
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Gl
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Figure 1: Example 1, DD Robustness Bounds

The robustness bound obtained using the DD
procedure can be compared with the limiting
cases obtained by treating all uncertainty as TV
and using optimal constant scales and by treat-
ing all uncertainty as LTI and using optimal fre-
quency dependant scales. These limiting cases
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Figure 2: Example 1, Frequency Dependent

Scales

are shown in Figure 3. The bound obtained us-
ing the DD analysis technique is between the
other two bounds at each frequency as it should
be. In this example, the DD bound is essentially
equal to the bound obtained using all frequency
dependant scales. It can be seen that assuming
all TV uncertainty would be conservative.
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Figure 3: Example 1, Robustness Bounds for
Different Classes of Uncertainty

4.2 Example 2

In this example the closed loop system obtained
after the fourth DK D iteration in [9] is analyzed

and compared to the results presented there. The
robustness bound obtained for this system after
the first and second steps described in Section 3
are shown in Figure 4. As in the first example,
it can be seen that the peak of the bound is not
lowered in the second step. The DD analysis
results are compared with the limiting cases as
discussed in the previous example and are shown
in Figure 5. The analysis of this system, which
has both TV and LTI uncertainty, demonstrates
that treating all uncertainty as TV can be con-
servative, while treating it all as LTI can give
misleading robustness bounds. Thus, in order
to get accurate analysis information, the type of
each uncertainty must be properly accounted for
by the analysis procedure.

0.94r

Magnitude
54
(4]
(=)

0.92r -~ 1st Step
-—2nd Step
107 10° 10° 10* 10°

Frequency (rad/sec)

Figure 4: Example 2, DD Robustness Bounds

In [9], the DK D procedure outlined in Sec-
tion 2 was used for analysis. The robustness
bound using this technique is shown in Figure 6
along with the robustness bound obtained using
the DD analysis procedure. The peak of the DD
bound is less than the peak of the bound in [9]
because the constant and frequency-dependent
scales that minimize the peak of the robustness
bound were found simultaneously, whereas in the
DK D procedure, the constant scales are found
independently of the frequency-dependent scales.
When the DK D procedure is used in an itera-
tive manner as in [9], the constant scales found in
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Figﬁre 5: Example 2, Robustness Bounds for
Different Classes of Uncertainty

later iterations are improved due to the frequency-
dependent scales which have been absorbed into
the system. Evidence of this can be seen in Fig-
ure 7, where the constant scales are found with-
out the aid of frequency-dependent scales from
a previous iteration. However, even when the
DK D procedure is used iteratively until it con-
verges as in [9] the results can be conservative as
shown here.

0.98

- - DKD Procedure
— DD Procedure

0.96
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©
H
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Figure 6: Example 2, Robustness Bounds using
DKD and DD

We also compare the DD robustness bound
with the bound obtained using the 3Ds proce-
dure outlined in Section 2. The 3Ds procedure is

the only feasible analysis alternative to the DD
procedure for general systems containing both
TV and LTI uncertainty, that is, for systems
for which the controller was not synthesized us-
ing the technique of [2] or [9]. The bounds are
shown in Figure 7. Again, the peak of the ro-
bustness bound obtained by the DD procedure
is less than that obtained by an alternative pro-
cedure. Here the difference is even more dra-
matic than shown in Figure 5. This is because
as with the DK D method, the 3Ds procedure
finds the constant scales independent of the fre-
quency dependent ones, but unlike the DK D
procedure, the 3Ds method doesn’t benefit from
frequency-dependent scales obtained in a previ-
ous iteration. It can be seen that the DD anal-
ysis procedure can remove a significant amount
of conservatism when analyzing a general system
with both TV and LTI uncertainty.

1.2

- - 3Ds Procedure
— DD Procedure

Magnitude

10
Frequency (rad/sec)

Figure 7: Example 2, Robustness Bounds using
3Ds and DD

5 Summary

A new technique for computing the robustness
bound for systems with both TV and LTI un-
certainties was presented. The method provides
less conservative results than current techniques.
Furthermore, it can be used on any system that




has TV and LTI uncertainty in linear fractional
form.

While the numerical results presented consid-
ered real scales, complex scales could have been
used as well. However, in [6] and [10] it was
shown that allowing the constant scales to be
complex doesn’t reduce the scaled singular value
if the system being analyzed has only real state
space entries. Furthermore, in [11], Packard shows
that restricting scales associated with full com-
plex LTT blocks to be positive real can be done
without loss of generality. That leaves only the
case of repeated LTI uncertainty with hope of
benefitting from the use of complex scales. There
may be cases where this improvement is signifi-
cant but it hasn’t been a factor in the problems
we have encountered.

Since the first step of the analysis is more
computationally intensive than the second it is
often advantageous to obtain the suboptimal con-
stant scales using a few strategically selected fre-
quency points. Then, step two can be performed
using a finer frequency grid to give a robustness
bound. It should be noted that using this ap-
proach it is possible for the peak of the bound
obtained in the second step to be larger than the
peak obtained in the first step, thus indicating a
frequency point that should be included in the
first step.

Finally, while a set of LMIs is mathematically
equivalent to a single LMI containing the set of
LMIs on its diagonal, we have found that the
first case requires significantly less memory and
often is much faster to solve.
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A Appendix

The state space matrices A, B, C, and D of the
weighted closed-loop system, G, used in exam-
ple one are given below, where the closed loop

matrix F,(G,A)= A + BA(I — DA)'C.

—1.06 0.99 0 0 0 —0.17 0 0 0 0 0 0
—2.41 —1.30 0 0 0 ~13.90 0 0 0 0 0 0
0 0 —0.10 1.1 0 0 0 0 0 0 0 0
0 1.00 0 —10.00 0 0 0 0 0 0 0 0
0 0 0 0 —100.00  ~9.49 0 0 0 0 0 0
A= 0 0 0 0 0 —2020  —6.04 96.48 —169.71  1435.23 35.68 —28.87
217.00 17235.05 0 0 0 0 —22.69 —1716.58 —0.00 0.00 0 —0.17
17235.05  1394626.39 0 0 0 0 —1719.98  —138983.71 —0.00 0.00 0 ~13.90
0.80 —0.01 0 0 0 0 —0.08 0.00 -0.10 1.41 0 0
0.99 10.02 0 0 0 0 —0.10 0.00 —0.00 —10.00 0 0
0 0 0 0 0 0 0 0 0 0 —100.00  —9.49
i 0 0 0 0 0 0 ~60.60 968.18 —1702.97 14401.91  358.08  —309.87
m 015 0 —0.17 0 0 0 ]
0 015 —13.90 0 0 0
0 0 0 0 0 0
0 0 0 —1.00 0 0
0 0 0 0 0 0
B 0 0 0 0 0 0
0 0 0 0 002  1.72
0 0 0 0 172 139.46
0 0 0 0 0.00 —0.00
0 0 0 —10.03 0.00  0.00
0 0 0 0 0 0
| o 0 0 0 0 o
—2.15  0.00 0 0 0 —0.36 0 0 0 0 0 0
—13.87 —253 0 0 0  -58.34 0 0 0 0 0 0
_ 0 0 0 0 9.49  1.00 0 0 0 0 0 0
C= 0 0 1.41 -2000 0 0 0 0 0 0 0 0
0 0 0 0 0 0 —0.01 011 —0.20 1.69 0.04 —0.03
0 0 0 0 0 —0.20 —006 096 —1.70 14.35 0.36 —0.29




